Oscillatory integrals with variable Calderón-Zygmund kernel on vanishing generalized Morrey spaces

V. S. Guliyev^{1,2,*}, A. Ahmadli¹ and S. E. Ekincioglu¹

¹Department of Mathematics, Dumlupinar University, Kutahya, Turkey

²Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan

*Corresponding author

E-mail: vagif@guliyev.com*, aysel.ahmadli@gmail.com, ekinciogluelifnur@gmail.com

Abstract

In this paper, the authors investigate the boundedness of the oscillatory singular integrals with variable Calderón-Zygmund kernel on generalized Morrey spaces $M^{p,\varphi}(\mathbb{R}^n)$ and the vanishing generalized Morrey spaces $VM^{p,\varphi}(\mathbb{R}^n)$. When $1 and <math>(\varphi_1, \varphi_2)$ satisfies some conditions, we show that the oscillatory singular integral operators T_{λ} and T^*_{λ} are bounded from $M^{p,\varphi_1}(\mathbb{R}^n)$ to $M^{p,\varphi_2}(\mathbb{R}^n)$ and from $VM^{p,\varphi_1}(\mathbb{R}^n)$ to $VM^{p,\varphi_2}(\mathbb{R}^n)$. Meanwhile, the corresponding result for the oscillatory singular integrals with standard Calderón-Zygmund kernel are established.

2010 Mathematics Subject Classification. **42B20**. 42B25, 42B35 Keywords. vanishing generalized Morrey space, oscillatory integral, variable Calderón-Zygmund kernels.

1 Introduction and main results

The classical Morrey spaces were originally introduced by Morrey in [18] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces, we refer the readers to [3, 6, 7, 12, 18, 20, 22, 23, 24, 26]. Guliyev, Mizuhara and Nakai [10, 17, 19] introduced generalized Morrey spaces $M^{p,\varphi}(\mathbb{R}^n)$ (see, also [11, 12, 27]). In [10, 12, 17, 19], the boundedness of the classical operators and their commutators in spaces $M^{p,\varphi}$ was also studied, see also [1, 8, 13, 29].

Let $\varphi(x,r)$ be a positive measurable function on $\mathbb{R}^n \times (0,\infty)$ and $1 \leq p < \infty$. For any $f \in L^p_{loc}(\mathbb{R}^n)$, we denote by $M^{p,\varphi}(\mathbb{R}^n)$ the generalized Morrey spaces, if

$$\|f\|_{M^{p,\varphi}} = \sup_{x \in \mathbb{R}^n, r > 0} \varphi(x,r)^{-1} |B(x,r)|^{-\frac{1}{p}} \|f\|_{L^p(B(x,r))} < \infty.$$

When $\varphi(x,r) = r^{\frac{\lambda-n}{p}}$, then $M^{p,\varphi}(\mathbb{R}^n) = L^{p,\lambda}(\mathbb{R}^n)$ is the classical Morrey spaces. There are many papers discussed the conditions on $\varphi(x,r)$ to obtain the boundedness of operators on the generalized Morrey spaces. For example, in [12], the following condition was imposed on the pair (φ_1, φ_2) :

$$\int_{r}^{\infty} \frac{\varphi_1(x,t)}{t} dt \le C \,\varphi_2(x,r),\tag{1.1}$$

where C does not depend on x and t. Under the above condition, Guliyev obtained the boundedness of the singular integral operator T from $M^{p,\varphi_1}(\mathbb{R}^n)$ to $M^{p,\varphi_1}(\mathbb{R}^n)$. Recently, in [1, 13], Guliyev et. introduced a weaker condition: If $1 , for any <math>x \in \mathbb{R}^n$ and t > 0, there exits a constant c > 0, such that

$$\int_{r}^{\infty} \frac{\operatorname{ess\,sup} \varphi_{1}(x,s)s^{\frac{n}{p}}}{t^{\frac{n}{p}+1}} dt \leq C \,\varphi_{2}(x,r).$$
(1.2)

If the pair (φ_1, φ_2) satisfies condition (1.1), then (φ_1, φ_2) satisfied condition (1.1). But the opposite is not true. We can see remark 4.7 in [13] for details.

Suppose that k is the standard Calderón-Zygmund kernel. That is, $k \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ is homogeneous of degree -n, and $\int_{\Sigma} k(x) d\sigma_x = 0$, where $\Sigma = \{x \in \mathbb{R}^n : |x| = 1\}$. The oscillatory integral operator T_{λ} is defined by

$$T_{\lambda}f(x) = p.v. \int_{\mathbb{R}^n} e^{i\lambda\Phi(x,y)}k(x-y)\varphi(x,y)f(y)dy,$$
(1.3)

where $\lambda \in \mathbb{R}, \varphi \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$, the space of infinitely differentiable functions on $\mathbb{R}^n \times \mathbb{R}^n$ with compact supports, and Φ is a real-analytic function or a real- $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ function satisfying that for any $(x_0, y_0) \in \operatorname{supp} \varphi$, there exists $(j_0, k_0), 1 \leq j_0, k_0 \leq n$, such that $\partial^2 \Phi(x_0, y_0) / \partial x_{j_0} \partial y_{k_0}$ does not vanish up to infinite order. These operators have arisen in the study of singular integrals supported on lower dimensional varieties, and the singular Radon transform. In [21], Y. B. Pan proved that T_{λ} are uniformly in λ bounded on $L^p(\mathbb{R}^n), 1 .$

Let k(x, y) be a variable Calderón-Zygmund kernel. That means, for a. e. $x \in \mathbb{R}^n, k(x, .)$ is a standard Calderón-Zygmund kernel and

$$\max_{|j| \le 2n, j \in \mathbb{N}_0^n} \left\| \frac{\partial^{|j|} k}{\partial y^j} \right\|_{L^{\infty}(\mathbb{R}^n \times \Sigma)} = A < \infty.$$
(1.4)

Define the oscillatory integral operator with variable Calderón-Zygmund kernel T^*_λ by

$$T^*_{\lambda}f(x) = p.v \int_{\mathbb{R}^n} e^{i\lambda\Phi(x,y)} k(x,x-y)\varphi(x,y)f(y)dy, \qquad (1.5)$$

where λ, φ and Φ satisfy the same assumptions as those in the operator defined by (1.3).

S. Z. Lu and D. C. Yang etc. [16] investigated the L^p boundedness about this class of oscillatory integral operators. The boundedness of some operators on these spaces can be see ([1, 10, 12, 13, 17, 18, 19, 28, 29],). Recently, A. Eroglu [15] obtained the boundedness of a class of oscillatory integral with Calderón-Zygmund kernel and polynomial phase on generalized Morrey spaces.

The purpose of this paper is to generalize the results above to the case with real- $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ or analytic phase functions. Our main results in this paper are formulated as follows.

Theorem 1.1. Let $\lambda \in \mathbb{R}$, $\varphi \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ and Φ is a real- $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ function satisfying that for any $(x_0, y_0) \in \operatorname{supp} \varphi$, there exists $(j_0, k_0), 1 \leq j_0, k_0 \leq n$, such that $\partial^2 \Phi(x_0, y_0) / \partial x_{j_0} \partial x_{k_0}$ does not vanish up to infinite order. Assume k is a standard Calderón-Zygmund kernel and T_{λ} is defined as in (1.3). Then for any $1 , and <math>\varphi_1, \varphi_2 \in \Omega_p$ satisfies the condition (1.2), the operator T_{λ} is bounded from M^{p,φ_1} to M^{p,φ_2} .

Theorem 1.2. Let $\lambda \in \mathbb{R}, \varphi \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ and Φ is a real- $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ function satisfying that for any $(x_0, y_0) \in \operatorname{supp} \varphi$, there exists $(j_0, k_0), 1 \leq j_0, k_0 \leq n$, such that $\partial^2 \Phi(x_0, y_0) / \partial x_{j_0} \partial x_{k_0}$ does

not vanish up to infinite order. Assume k is a variable Calderón-Zygmund kernel and T^*_{λ} is defined as in (1.5). Then for any $1 , and <math>\varphi_1, \varphi_2 \in \Omega_p$ satisfies the condition (1.2), the operator T^*_{λ} is bounded from M^{p,φ_1} to M^{p,φ_2} .

Theorem 1.3. Let $\lambda \in \mathbb{R}, \varphi \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ and Φ is a real- $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ function satisfying that for any $(x_0, y_0) \in \operatorname{supp} \varphi$, there exists $(j_0, k_0), 1 \leq j_0, k_0 \leq n$, such that $\partial^2 \Phi(x_0, y_0) / \partial x_{j_0} \partial x_{k_0}$ does not vanish up to infinite order. Assume k is a standard Calderón-Zygmund kernel and T_{λ} is defined as in (1.3). Then for any $1 , and <math>\varphi_1, \varphi_2 \in \Omega_{p,1}$ satisfies the conditions

$$c_{\delta} := \int_{\delta}^{\infty} \sup_{x \in \mathbb{R}^n} \varphi_1(x, t) \frac{dt}{t} < \infty$$
(1.6)

for every $\delta > 0$, and

$$\int_{r}^{\infty} \varphi_1(x,t) \frac{dt}{t} \le C_0 \varphi_2(x,r), \tag{1.7}$$

where C_0 does not depend on $x \in \mathbb{R}^n$ and r > 0, the operator T_{λ} is bounded from VM^{p,φ_1} to VM^{p,φ_2} .

Theorem 1.4. Let $\lambda \in \mathbb{R}, \varphi \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ and Φ is a real- $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ function satisfying that for any $(x_0, y_0) \in \operatorname{supp} \varphi$, there exists $(j_0, k_0), 1 \leq j_0, k_0 \leq n$, such that $\partial^2 \Phi(x_0, y_0) / \partial x_{j_0} \partial x_{k_0}$ does not vanish up to infinite order. Assume k is a standard Calderón-Zygmund kernel and T_{λ}^* is defined as in (1.5). Then for any $1 , and <math>\varphi_1, \varphi_2 \in \Omega_{p,1}$ satisfies the conditions (1.6) and (1.7), the operator T_{λ}^* is bounded from VM^{p,φ_1} to VM^{p,φ_2} .

2 Notations and preliminary Lemmas

Let $B = B(x_0, r)$ be the ball with the center x_0 and radius r. Given a ball B and $\lambda > 0$, λB denotes the ball with the same center as B whose radius is λ times that of B.

Lemma 2.1. [9] Let $\varphi(x, r)$ be a positive measurable function on $\mathbb{R}^n \times (0, \infty)$ and $1 \le p < \infty$. (*i*) If

$$\sup_{t < r < \infty} r^{-n/p} \varphi(x, r)^{-1} = \infty \quad \text{for some } t > 0 \text{ and for all } x \in \mathbb{R}^n,$$
(2.8)

then $M^{p,\varphi}(\mathbb{R}^n) = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^n .

(*ii*) If

$$\sup_{0 < r < \tau} \varphi(x, r)^{-1} = \infty \quad \text{for some } \tau > 0 \text{ and for all } x \in \mathbb{R}^n,$$
(2.9)

then $M^{p,\varphi}(\mathbb{R}^n) = \Theta$.

Remark 2.2. We denote by Ω_p the sets of all positive measurable functions φ on $\mathbb{R}^n \times (0, \infty)$ such that for all t > 0,

$$\sup_{x \in \mathbb{R}^n} \left\| r^{-n/p} \varphi(x, r)^{-1} \right\|_{L_{\infty}(t, \infty)} < \infty, \quad \text{and} \quad \sup_{x \in \mathbb{R}^n} \left\| \varphi(x, r)^{-1} \right\|_{L_{\infty}(0, t)} < \infty,$$

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that $\varphi \in \Omega_p$.

V. S. Guliyev, A. Ahmadli, S. E. Ekincioglu

For brevity, in the sequel we use the notations

$$\mathfrak{A}_{p,\varphi}(f;x,r) := r^{-n/p} \,\varphi(x,r)^{-1} \|f\|_{L_p(B(x,r))}$$

and

$$\mathfrak{A}_{W,p,\varphi}(f;x,r) := r^{-n/p} \varphi(x,r)^{-1} \|f\|_{WL_p(B(x,r))}$$

where $WL^{p}(B(x,r))$ denotes the weak L^{p} -space of measurable functions f for which

$$\|f\|_{WL^{p}(B(x,r))} \equiv \|f\chi_{B(x,r)}\|_{WL^{p}(\mathbb{R}^{n})} = \sup_{t>0} t \left(\int_{\{y \in B(x,r): |f(y)| > t\}} dy \right)^{\frac{1}{p}}$$

Definition 2.3. The vanishing generalized Morrey space $VM^{p,\varphi}(\mathbb{R}^n)$ is defined as the spaces of functions $f \in M^{p,\varphi}(\mathbb{R}^n)$ such that

$$\lim_{r \to 0} \sup_{x \in \mathbb{R}^n} \mathfrak{A}_{p,\varphi}(f;x,r) = 0.$$
(2.10)

The vanishing weak generalized Morrey space $VWM^{p,\varphi}(\mathbb{R}^n)$ is defined as the spaces of functions $f \in WM^{p,\varphi}(\mathbb{R}^n)$ such that

$$\lim_{r \to 0} \sup_{x \in \mathbb{R}^n} \mathfrak{A}_{W,p,\varphi}(f;x,r) = 0.$$

The vanishing spaces $VM^{p,\varphi}(\mathbb{R}^n)$ and $VWM^{p,\varphi}(\mathbb{R}^n)$ are Banach spaces with respect to the norm

$$\|f\|_{VM^{p,\varphi}} \equiv \|f\|_{M^{p,\varphi}} = \sup_{x \in \mathbb{R}^n, r > 0} \mathfrak{A}_{p,\varphi}(f;x,r),$$
$$\|f\|_{VWM^{p,\varphi}} \equiv \|f\|_{WM^{p,\varphi}} = \sup_{x \in \mathbb{R}^n, r > 0} \mathfrak{A}_{W,p,\varphi}(f;x,r),$$

respectively.

Remark 2.4. We denote by $\Omega_{p,1}$ the sets of all positive measurable functions φ on $\mathbb{R}^n \times (0, \infty)$ such that

$$\inf_{x \in \mathbb{R}^n} \inf_{r > \delta} \varphi(x, r) > 0, \text{ for some } \delta > 0,$$
(2.11)

and

$$\lim_{r \to 0} \frac{r^{n/p}}{\varphi(x, r)} = 0.$$
(2.12)

For the non-triviality of the space $VM^{p,\varphi}(\mathbb{R}^n)$ we always assume that $\varphi \in \Omega_{p,1}$.

The vanishing generalized Morrey space $VM^{p,\varphi}(\mathbb{R}^n)$ were studied in [2]. In the case $\varphi(x,r) = r^{(\lambda-n)/p}$, $VM^{p,\varphi}(\mathbb{R}^n)$ is the vanishing Morrey space $VL_{p,\lambda}(\mathbb{R}^n)$ introduced by Vitanza in [31], where applications to PDE were considered. We refer to [5, 14, 22, 25] for some properties of vanishing generalized Morrey spaces.

Our argument based heavily on the following results.

Lemma 2.5. [16] Assume T_{λ} is defined as in (1.3). Then for any 1 , we have

$$||T_{\lambda}f||_{L^p} \le C(n, p, \Phi, \varphi, C_p) B ||f||_{L^p}$$

where $C(n, p, \Phi, \varphi, C_p)$ is independent of λ , k and f, and $B = ||k||_{C^1(\Sigma)}$.

Lemma 2.6. [16] Assume T_{λ}^* is defined as in (1.5). Then for any 1 , we have

$$||T_{\lambda}^*f||_{L^p} \le C(n, p, \Phi, \varphi, C_p) A ||f||_{L^p},$$

where $C(n, p, \Phi, \varphi, C_p)$ is independent of λ , k and f. A is defined in (1.4).

The Hardy-Littlewood maximal operator M is defined by

$$Mf(x) = \sup_{B \ni x} \frac{1}{|B|} \int_{B} |f(y)| dy, \quad f \in L_{loc}(\mathbb{R}^{n}).$$

Theorem 2.7. [1, 13] Let $1 \le p < \infty$ and (φ_1, φ_2) satisfy the condition (1.2). Then the maximal operator M and the singular integral operator T are bounded from M^{p,φ_1} to M^{p,φ_2} for p > 1 and from M^{1,φ_1} to WM^{1,φ_2} .

A distribution kernel k is called a standard Calderòn-Zygmund kernel (SCZK) if it satisfies the following hypotheses:

$$\begin{split} |k(x,y)| &\leq \frac{C}{|x-y|^n}, \forall x \neq y, \\ |\nabla_x k(x,y)| + |\nabla_y k(x,y)| &\leq \frac{C}{|x-y|^{n+1}}, \forall x \neq y \end{split}$$

The corresponding Calderòn-Zygmund integral operator S and oscillatory integral operator R are defined by

$$Sf(x) = p.v. \int_{\mathbb{R}^n} k(x, y) f(y) dy$$

and

$$Rf(x) = p.v. \int_{\mathbb{R}^n} e^{iP(x,y)} k(x,y) f(y) dy,$$

where P(x, y) is a real valued polynomial defined on $\mathbb{R}^n \times \mathbb{R}^n$.

Theorem A [15] Let $1 , and <math>(\varphi_1, \varphi_2)$ satisfies the condition (1.1). If S is of type (L^2, L^2) , then for any real polynomial P(x, y), there exists a constant C > 0 such that

$$||Rf||_{M^{p,\varphi_2}} \le C ||f||_{M^{p,\varphi_1}}.$$

Lemma 2.8. [30] Denote by \mathcal{H}_m the spaces of spherical harmonic functions of degree m. Then

(a) $L^2(\sum) = \bigoplus_{m=0}^{\infty} \mathcal{H}_m$, and $g_m = \dim \mathcal{H}_m \le C(n)m^{n-2}$ for any $m \in \mathbb{N}$,

(b) for any m = 0, 1, 2, ..., there exists an orthogonal system $\{Y_{jm}\}_{j=1}^{g_m}$ of \mathcal{H}_m such that $\|Y_{jm}\|_{L^{\infty}(\Sigma)} \leq C(n)m^{n/2-1}, Y_{jm} = (-m)^{-n}(m+n-2)^{-n}\Lambda^n Y_{jm}, j = 1, ..., g_m$, and Λ is the Beltrami-Laplace operator on Σ .

In the following the letter C will denote a constant which may vary at each occurrence.

3 Proof of Theorems 1.1 and 1.2

In this section we are going to use the following statement on the boundedness of the Hardy operator

$$Hg(t) := \frac{1}{t} \int_0^t g(r) dr, \ 0 < t < \infty.$$

Theorem B. [4] The inequality

$$\operatorname{ess\,sup}_{t>0} w(t) Hg(t) \le c \operatorname{ess\,sup}_{t>0} v(t)g(t)$$

holds for all non-negative and non-increasing g on $(0,\infty)$ if and only if

$$A := \sup_{t>0} \frac{w(t)}{t} \int_0^t \frac{dr}{\mathop{\mathrm{ess\,inf}}_{0 < s < r} v(s)} < \infty,$$

and $c \approx A$.

The following lemma is valid.

Lemma 3.1. Let $1 and <math>T_{\lambda}$ is defined as in (1.3). Then the inequality

$$\|T_{\lambda}f\|_{L^{p}(B(x_{0},r))} \lesssim r^{\frac{n}{p}} \int_{2r}^{\infty} \|f\|_{L^{p}(B(x_{0},t))} t^{-1-\frac{n}{p}} dt$$
(3.13)

holds for any ball $B(x_0, r)$ and for all $f \in L^p_{loc}(\mathbb{R}^n)$.

Proof. Let $p \in (1, \infty)$. For arbitrary $x_0 \in \mathbb{R}^n$, set $B = B(x_0, r)$ for the ball centered at x_0 and radius $r, 2B = B(x_0, 2r)$. We represent f as

$$f = f_1 + f_2, \quad f_1(y) = f(y)\chi_{2B}(y), \quad f_2(y) = f(y)\chi_{(2B)}\mathfrak{c}(y)$$

and have

$$||T_{\lambda}f||_{L^{p}(B)} \leq ||T_{\lambda}f_{1}||_{L^{p}(B)} + ||T_{\lambda}f_{2}||_{L^{p}(B)}$$

It is known that (see Lemma 2.5) the operator T_{λ} is bounded on $L^p(\mathbb{R}^n)$. Since $f_1 \in L^p(\mathbb{R}^n)$, $T_{\lambda}f_1 \in L^p(\mathbb{R}^n)$ and boundedness of T_{λ} in $L^p(\mathbb{R}^n)$ (see [16]) it follows that

$$||T_{\lambda}f_1||_{L^p(B)} \le ||T_{\lambda}f_1||_{L^p(\mathbb{R}^n)} \le C||f_1||_{L^p(\mathbb{R}^n)} = C||f||_{L^p(2B)},$$

where the constant C > 0 is independent of f.

We now estimate $T_{\lambda}f_2$. We can write

$$\left|T_{\lambda}f_{2}(x)\right| = \left|\int_{(2B)^{\complement}} e^{i\lambda\Phi(x,y)}k(x-y)\varphi(x,y)f(y)dy\right|.$$

Now by an argument similar to the proof of Lemma 6 in [16], we choose $\varphi_1 \in C_0^{\infty}(\mathbb{R}^n)$ such that $\varphi_1(x) \equiv 1$ when $|x| \leq 1$, and $\varphi_1(x) \equiv 0$ when |x| > 2. Let $\varphi_2 = 1 - \varphi_1$ and $N \in \mathbb{N}$ which is large enough and will be determined later. Write

$$k(x) = k_{\lambda}^1(x) + k_{\lambda}^2(x),$$

where

$$k_{\lambda}^{j} = k(x)\varphi_{j}(\lambda^{1/N}x), \ j = 1,2$$

Then

$$T_{\lambda}f_{2}(x) = p.v. \int_{(2B)^{c}} e^{i\lambda\Phi(x,y)}k_{\lambda}^{1}(x-y)\varphi(x,y)f(y)dy$$
$$+ p.v. \int_{(2B)^{c}} e^{i\lambda\Phi(x,y)}k_{\lambda}^{2}(x-y)\varphi(x,y)f(y)dy := T_{\lambda}^{1}f_{2}(x) + T_{\lambda}^{2}f_{2}(x)$$

Let us first estimate $T_{\lambda}^{1}f_{2}(x)$. To do so, using Taylor's expansion and the compactness of supp φ , we write

$$\Phi(x,y) = \Phi(x,x) + P(x,y) + r_N(x,y)$$

for $(x,y) \in \operatorname{supp} \varphi$, where P(x,y) is a polynomial with deg P < N and $|r_N(x,y)| \leq C|x-y|^N$ with C in dependent of x and y. Define

$$Rf(x) = p.v. \int_{(2B)^c} e^{i\lambda P(x,y)} k_{\lambda}^1(x-y)\varphi(x,y)f(y)dy.$$

Therefore

$$\begin{split} e^{-i\lambda\Phi(x,x)}T_{\lambda}^{1}f_{2}(x) - Rf(x) \\ &= \int_{|x-y| \leq 2\lambda^{-1/N}} e^{i\lambda P(x,y)} \left(e^{i\lambda r_{N}(x,y)} - 1 \right] \right) k_{\lambda}^{1}(x-y)\varphi(x,y)f(y)dy \\ &= \sum_{j=0}^{\infty} \int_{2^{-j}\lambda^{-1/N} < |x-y| \leq 2^{-j+1}\lambda^{-1/N}} e^{i\lambda P(x,y)} \left(e^{i\lambda r_{N}(x,y)} - 1 \right) k_{\lambda}^{1}(x-y)\varphi(x,y)f(y)dy \\ &\equiv \sum_{j=0}^{\infty} T_{\lambda j}^{1}f_{2}(x). \end{split}$$

On $T_{\lambda j}^1 f_2(x)$, by the properties of r_N and k, we have

$$|T_{\lambda j}^1 f_2(x)| \le C 2^{-jN} M f(x).$$

So we have

$$|T_{\lambda}^{1}f_{2}(x)| \leq C \sum_{j=0}^{\infty} 2^{-jN} Mf(x) + C|Rf(x)| \leq CMf(x) + C|Rf(x)|.$$

By Theorem 4.1 in [12] and Lemma 3.1 in [15], we have

$$\begin{aligned} \|T_{\lambda}^{1}f_{2}\|_{L^{p}(B(x_{0},r))} &\lesssim \|Mf\|_{L^{p}(B(x_{0},r))} + \|Rf\|_{L^{p}(B(x_{0},r))} \\ &\lesssim r^{\frac{n}{p}} \int_{2r}^{\infty} \|f\|_{L^{p}(B(x_{0},t))} t^{-1-\frac{n}{p}} dt. \end{aligned}$$

Now, let us turn to estimate $T_{\lambda}^2 f_2(x)$. We consider the following two cases. Case 1. $\lambda \leq 1$. Similar to that estimate of T_{λ}^2 in Lemma 6 in [16], we have

$$|T_{\lambda}^2 f_2(x)| \le CMf(x),$$

where the constant C > 0 is independent of f. By Theorem 4.1 in [12] we have

$$||T_{\lambda}^{2}f_{2}||_{L^{p}(B(x_{0},r))} \leq C||f||_{L^{p}(B(x_{0},r))}.$$

Case 2. $\lambda > 1$. We choose $\varphi_0 \in C_0^{\infty}(\mathbb{R}^n)$ such that

$$\operatorname{supp} \varphi_0 \subseteq \{ x \in \mathbb{R}^n : 1 < |x| \le 2 \},\$$

and

$$\varphi_2(x) = \sum_{j=0}^{\infty} \varphi_0(2^{-j}x).$$

Let

$$k_{\lambda,j}^2(x) = k(x)\varphi_0(2^{-j}\lambda^{1/N}x).$$

Then

$$\begin{split} T_{\lambda}^{2}f_{2}(x) &= \int_{(2B)^{\complement}} e^{i\lambda\Phi(x,y)}k_{\lambda}^{2}(x-y)\varphi(x,y)f(y)dy\\ &= \sum_{j=0}^{\infty}\int_{(2B)^{\complement}} e^{i\lambda\Phi(x,y)}k_{\lambda,j}^{2}(x-y)\varphi(x,y)f(y)dy\\ &\equiv \sum_{j=0}^{\infty}T_{\lambda,j}^{2}f_{2}(x). \end{split}$$

For $T^2_{\lambda,j}$, by the definition of it, we can get

$$|T_{\lambda}^{2}f_{2}(x)| \leq C \int_{2^{j}\lambda^{-1/N} < |x-y| \leq 2^{j.1}\lambda^{-1/N}} \frac{1}{|x-y|^{n}} |f(y)| dy \leq CMf(x).$$
(3.14)

The inequality (3.14) also can be see in [16], we omit the detail here. By Theorem 4.1 in [12], we have

$$\|T_{\lambda}^2 f_2\|_{L^p(B(x_0,r))} \le Cr^{\frac{n}{p}} \int_{2r}^{\infty} \|f\|_{L^p(B(x_0,t))} t^{-1-\frac{n}{p}} dt.$$

Therefore

$$\begin{aligned} \|T_{\lambda}f_{2}\|_{L^{p}(B(x_{0},r))} &\leq \|T_{\lambda}^{1}f_{2}\|_{L^{p}(B(x_{0},r))} + \|T_{\lambda}^{2}f_{2}\|_{L^{p}(B(x_{0},r))} \\ &\leq Cr^{\frac{n}{p}} \int_{2r}^{\infty} \|f\|_{L^{p}(B(x_{0},t))} t^{-1-\frac{n}{p}} dt. \end{aligned}$$

This finishes the proof of Lemma 3.1.

76

Q.E.D.

Proof of Theorem 1.1

By Lemma 3.1 and Theorem B we get

$$\begin{aligned} \|T_{\lambda}f\|_{M^{p,\varphi_{2}}} &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{r}^{\infty} \|f\|_{L^{p}(B(x, t))} t^{-1 - \frac{n}{p}} dt \\ &\approx \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{0}^{r^{-\frac{n}{p}}} \|f\|_{L^{p}(B(x, t^{-\frac{n}{p}}))} dt \\ &= \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r^{-\frac{p}{n}})^{-1} \int_{0}^{r} \|f\|_{L^{p}(B(x, t^{-\frac{p}{n}}))} dt \\ &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{1}(x, r^{-\frac{p}{n}})^{-1} r \|f\|_{L^{p}(B(x, r^{-\frac{p}{n}}))} = \|f\|_{M^{p,\varphi_{2}}} \end{aligned}$$

This finishes the proof of Theorem 1.1.

The following lemma is valid.

Lemma 3.2. Let $1 and <math>T^*_{\lambda}$ is defined as in (1.5). Then the inequality

$$\|T_{\lambda}^{*}f\|_{L^{p}(B(x_{0},r))} \lesssim r^{\frac{n}{p}} \int_{2r}^{\infty} \|f\|_{L^{p}(B(x_{0},t))} t^{-1-\frac{n}{p}} dt$$

holds for any ball $B(x_0, r)$ and for all $f \in L^p_{loc}(\mathbb{R}^n)$.

Proof. Let $p \in (1, \infty)$. For arbitrary $x_0 \in \mathbb{R}^n$, set $B = B(x_0, r)$ for the ball centered at x_0 and radius $r, 2B = B(x_0, 2r)$. We represent f as

$$f = f_1 + f_2, \quad f_1(y) = f(y)\chi_{2B}(y), \quad f_2(y) = f(y)\chi_{(2B)}\mathbf{c}(y)$$

and have

$$||T_{\lambda}^*f||_{L^p(B)} \le ||T_{\lambda}^*f_1||_{L^p(B)} + ||T_{\lambda}^*f_2||_{L^p(B)}$$

It is known that (see Lemma 2.5) the operator T^*_{λ} is bounded on $L^p(\mathbb{R}^n)$. Since $f_1 \in L^p(\mathbb{R}^n)$, $T^*_{\lambda}f_1 \in L^p(\mathbb{R}^n)$ and boundedness of T^*_{λ} in $L^p(\mathbb{R}^n)$ (see [16]) it follows that

$$\|T_{\lambda}^*f_1\|_{L^p(B)} \le \|T_{\lambda}^*f_1\|_{L^p(\mathbb{R}^n)} \le C\|f_1\|_{L^p(\mathbb{R}^n)} = C\|f\|_{L^p(2B)},$$

where the constant C > 0 is independent of f.

We now estimate $T_{\lambda}^* f_2$. For each $m \in \mathbb{N}$ and $j = 1, \ldots, g_m$, we get

$$a_{jm}(x) = \int_{\sum} \Omega(x, z) Y_{jm}(z) d\sigma_z$$

where $\Omega(x, z) = |z|^n k(x, z)$. Then for $a.e.x \in \mathbb{R}^n$,

$$\Omega(x,z) = \sum_{m=1}^{\infty} \sum_{j=1}^{g_m} a_{jm}(x) Y_{jm}(z'), \qquad (3.15)$$

where z' = z/|z| for any $z \in \mathbb{R}^n \setminus \{0\}$. By Lemma 2.8, we have that for any $x \in \mathbb{R}^n$,

$$|a_{jm}(x)| = m^{-n}(m+n-2)^{-n} \left| \int_{\Sigma} \Omega(x,z) \Lambda^n Y_{jm}(z) d\sigma_z \right|$$

= $m^{-n}(m+n-2)^{-n} \left| \int_{\Sigma} \Lambda^n \Omega(x,z) Y_{jm}(z) d\sigma_z \right|$
 $\leq C(n) A m^{-2n}.$ (3.16)

By Lemma 2.8 again, we can verify that for any $\varepsilon > 0, N \in \mathbb{N}$, and a.e. $x \in \mathbb{R}^n$, if $|y - x| \ge \varepsilon$, then

$$\left|\sum_{m=1}^{N}\sum_{j=1}^{g_{m}}e^{i\lambda\Phi(x,y)}\frac{a_{jm}(x)Y_{jm}((x-y)')}{|x-y|^{n}}\varphi(x,y)f_{2}(y)\right| \le C(\varepsilon)\,A\,|f_{2}(y)|.$$
(3.17)

Therefore, from (3.15), (3.17) and the Lebesgue dominated convergence theorem, it follows that

$$T_{\lambda}^{*}f_{2}(x) = \lim_{\varepsilon \to 0} \int_{|x-y| \ge \varepsilon} e^{i\lambda\Phi(x,y)}k(x,x-y)\varphi(x,y)f_{2}(y)dy$$

$$= \lim_{\varepsilon \to 0} \sum_{m=1}^{\infty} \sum_{j=1}^{g_{m}} \int_{|x-y| \ge \varepsilon} e^{i\lambda\Phi(x,y)} \frac{a_{jm}(x)Y_{jm}((x-y)')}{|x-y|^{n}}\varphi(x,y)f_{2}(y)dy$$

$$= \lim_{\varepsilon \to 0} \sum_{m=1}^{\infty} \sum_{j=1}^{g_{m}} a_{jm}(x) \int_{|x-y| \ge \varepsilon} e^{i\lambda\Phi(x,y)} \frac{Y_{jm}((x-y)')}{|x-y|^{n}}\varphi(x,y)f_{2}(y)dy.$$

We write

$$R_{jm}f_2(x) = \int_{|x-y| \ge \varepsilon} e^{i\lambda\Phi(x,y)} \frac{Y_{jm}((x-y)')}{|x-y|^n} \varphi(x,y) f_2(y) dy.$$

It is easy to see that $R_{jm}f_2(x)$ is the oscillatory integral operator defined by (1.3). By Theorem 1.1 we have R_{jm} bounded from $M^{p,\varphi_1}(\mathbb{R}^n)$ to $M^{p,\varphi_2}(\mathbb{R}^n)$. Therefore, by (3.16) and the above discussion we have

$$\|T_{\lambda}^*f_2\|_{L^p(B(x_0,r))} \lesssim r^{\frac{n}{p}} \int_{2r}^{\infty} \|f\|_{L^p(B(x_0,t))} t^{-1-\frac{n}{p}} dt.$$

This finishes the Lemma 3.2.

Proof of Theorem 1.2.

By Lemma 3.2 and Theorem B we get

Q.E.D.

$$\begin{split} \|T_{\lambda}^{*}f\|_{M^{p,\varphi_{2}}} &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{r}^{\infty} \|f\|_{L^{p}(B(x, t))} t^{-1 - \frac{n}{p}} dt \\ &\approx \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{0}^{r^{-\frac{n}{p}}} \|f\|_{L^{p}(B(x, t^{-\frac{p}{n}}))} dt \\ &= \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r^{-\frac{p}{n}})^{-1} \int_{0}^{r} \|f\|_{L^{p}(B(x, t^{-\frac{p}{n}}))} dt \\ &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{1}(x, r^{-\frac{p}{n}})^{-1} r \|f\|_{L^{p}(B(x, r^{-\frac{p}{n}}))} = \|f\|_{M^{p,\varphi_{1}}} \end{split}$$

This finishes the proof of Theorem 1.2.

4 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3.

The statement is derived from the estimate (3.13). The estimation of the norm of the operator, that is, the boundedness in the non-vanishing space, immediately follows from by Theorem 1.1. So we only have to prove that

$$\lim_{r \to 0} \sup_{x \in \mathbb{R}^n} \mathfrak{A}_{p,\varphi_1}(f;x,r) = 0 \quad \Rightarrow \quad \lim_{r \to 0} \sup_{x \in \mathbb{R}^n} \mathfrak{A}_{p,\varphi_2}(T_\lambda f;x,r) = 0.$$
(4.18)

To show that $\sup_{x \in \mathbb{R}^n} \varphi_2(x, r)^{-1} r^{-n/p} \|T_\lambda f\|_{L_p(B(x, r))} < \varepsilon$ for small r, we split the right-hand side of (3.13):

$$\varphi_2(x,r)^{-1}r^{-n/p} \|T_{\lambda}f\|_{L_p(B(x,r))} \le C[I_{\delta_0}(x,r) + J_{\delta_0}(x,r)],$$
(4.19)

where $\delta_0 > 0$ (we may take $\delta_0 > 1$), and

$$I_{\delta_0}(x,r) := \frac{1}{\varphi_2(x,r)} \int_r^{\delta_0} t^{-\frac{n}{p}-1} \|f\|_{L_p(B(x,t))} dt$$

and

$$J_{\delta_0}(x,r) := \frac{1}{\varphi_2(x,r)} \int_{\delta_0}^{\infty} t^{-\frac{n}{p}-1} \|f\|_{L_p(B(x,t))} dt$$

and it is supposed that $r < \delta_0$. We use the fact that $f \in VM^{p,\varphi_1}(\mathbb{R}^n)$ and choose any fixed $\delta_0 > 0$ such that

$$\sup_{x \in \mathbb{R}^n} \varphi_1(x, r)^{-1} r^{-n/p} \|f\|_{L_p(B(x, r))} < \frac{\varepsilon}{2CC_0}$$

where C and C_0 are constants from (1.7) and (4.19). This allows to estimate the first term uniformly in $r \in (0, \delta_0)$:

$$\sup_{x \in \mathbb{R}^n} CI_{\delta_0}(x, r) < \frac{\varepsilon}{2}, \quad 0 < r < \delta_0$$

The estimation of the second term now my be made already by the choice of r sufficiently small. Indeed, thanks to the condition (2.11) we have

$$J_{\delta_0}(x,r) \le c_{\sigma_0} \ \frac{1}{\varphi_1(x,r)} \ \|f\|_{VM^{p,\varphi_1}},$$

where c_{σ_0} is the constant from (2.10). Then, by (2.11) it suffices to choose r small enough such that

$$\sup_{x \in \mathbb{R}^n} \frac{1}{\varphi_2(x,r)} \le \frac{\varepsilon}{2c_{\sigma_0} \|f\|_{VM^{p,\varphi_1}}},$$

which completes the proof of (4.18).

The proof of Theorem 1.4 is similar to the proof of Theorem 1.3.

Acknowledgements.

We thank the referee(s) for careful reading the paper and useful comments. The research of V. Guliyev was partially supported by the Grant of 1st Azerbaijan-Russia Joint Grant Competition (Agreement Number No. EIF-BGM-4-RFTF-1/2017-21/01/1).

References

- A. Akbulut, V.S. Guliyev and R. Mustafayev, On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces. Math. Bohem. 137 (1) 2012, 27-43.
- [2] A. Akbulut, V.S. Guliyev, M.N Omarova, Marcinkiewicz integrals associated with Schrödinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl. 2017, Paper No. 121, 16 pp.
- [3] V. Burenkov, V.S. Guliyev, Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces, Pot. Anal. 30 (3) 2009, 211-249.
- [4] M. Carro, L. Pick, J. Soria, V.D. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (3) (2001), 397-428.
- [5] X. Cao, D. Chen, The boundedness of Toeplitz-type operators on vanishing-Morrey spaces, Anal. Theory Appl. 27 (4) (2011), 309-319.
- [6] G. Di Fazio and M.A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), 241-256.
- [7] D. Fan, S. Lu and D. Yang, Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N. S.) 14 (1998), suppl., 625-634.

- [8] Y. Ding, D. Yang, Z. Zhou, Boundedness of sublinear operators and commutators on $L^{p,w}(\mathbb{R}^n)$, Yokohama Math. J. 46 (1) (1998), 15-27.
- [9] A. Eroglu, V.S. Guliyev, C.V. Azizov, Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups, Math. Notes 102 (5) (2017), 127-139.
- [10] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in \mathbb{R}^n . Doctor of Sciences, Mat. Inst. Steklova, Moscow, 1994, 329 pp. (in Russian)
- [11] V.S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku. 1999, 1-332. (Russian)
- [12] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. 2009, Art. ID 503948.
- [13] V.S. Guliyev, S.S. Aliyev, T. Karaman, P. S. Shukurov, Boundedness of sublinear operators and commutators on generalized Morrey Space, Integral Equations Operator Theory 71 (2011), 327-355.
- [14] V.S. Guliyev, R.V. Guliyev, M.N. Omarova, Riesz transforms associated with Schrdinger operator on vanishing generalized Morrey spaces, Appl. Comput. Math. 17 (1) (2018), 56-71.
- [15] A. Eroglu, Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces, Bound. Value Probl. 2013, 2013:70, 12 pp.
- [16] S. Lu, D. Yang, and Z. Zhou, On local oscillatory integrals with variable Calderon-Zygmund kernels, Integral Equations Operator Theory 33 (4) (1999), 456-470.
- [17] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, Springer - Verlag, Tokyo (1991), 183-189.
- [18] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
- [19] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95-103.
- [20] D.K. Palagachev and L.G. Softova, Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's, Potential Anal. 20 (2004), 237-263.
- [21] Y. Pan, Uniform estimate for oscillatory integral operators, J. Funct. Anal. 130 (1991), 207-220.
- [22] M.A. Ragusa, Commutators of fractional integral operators on vanishing-Morrey spaces, J. Global Optim. 40 (1-3) (2008), 361-368.
- [23] M.A. Ragusa, Embeddings for Morrey-Lorentz Spaces, J. Optim. Theory Appl. 154 (2) (2012), 491-499.
- [24] M.A. Ragusa, Necessary and sufficient condition for a VMO function, Appl. Math. Comput. 218 (24) (2012), 11952-11958.

- [25] N. Samko, Maximal, potential and singular operators in vanishing generalized Morrey spaces, J. Global Optim. 57 (4) (2013), 1385-1399.
- [26] Y. Sawano, H. Gunawan, V. Guliyev, H. Tanaka, Morrey spaces and related function spaces [Editorial]. J. Funct. Spaces 2014, Art. ID 867192, 2 pp.
- [27] Y. Sawano, A thought on generalized Morrey spaces, arXiv:1812.08394v1, 2018, 78 pp.
- [28] Y. Sawano, S. Sugano, H. Tanaka, A note on generalized fractional integral operators on generalized Morrey spaces, Bound. Value Probl. 2009, Art. ID 835865, 18 pp.
- [29] L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 3, 757-766.
- [30] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, USA, 1971.
- [31] C. Vitanza, Functions with vanishing Morrey norm and elliptic partial differential equations, In: Proceedings of Methods of Real Analysis and Partial Differential Equations, Capri, 1990, pp. 147-150, Springer.