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Abstract

In this paper, the authors investigate the boundedness of the oscillatory singular integrals with
variable Calderón-Zygmund kernel on generalized Morrey spaces Mp,ϕ(Rn) and the vanishing
generalized Morrey spaces VMp,ϕ(Rn). When 1 < p < ∞ and (ϕ1, ϕ2) satisfies some condi-
tions, we show that the oscillatory singular integral operators Tλ and T ∗

λ are bounded from
Mp,ϕ1(Rn) to Mp,ϕ2(Rn) and from VMp,ϕ1(Rn) to VMp,ϕ2(Rn). Meanwhile, the correspond-
ing result for the oscillatory singular integrals with standard Calderón-Zygmund kernel are
established.
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1 Introduction and main results

The classical Morrey spaces were originally introduced by Morrey in [18] to study the local behavior
of solutions to second order elliptic partial differential equations. For the properties and applications
of classical Morrey spaces, we refer the readers to [3, 6, 7, 12, 18, 20, 22, 23, 24, 26]. Guliyev,
Mizuhara and Nakai [10, 17, 19] introduced generalized Morrey spaces Mp,ϕ(Rn) (see, also [11, 12,
27]). In [10, 12, 17, 19], the boundedness of the classical operators and their commutators in spaces
Mp,ϕ was also studied, see also [1, 8, 13, 29].

Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and 1 ≤ p < ∞. For any f ∈
Lploc(Rn), we denote by Mp,ϕ(Rn) the generalized Morrey spaces, if

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)) <∞.

When ϕ(x, r) = r
λ−n
p , then Mp,ϕ(Rn) = Lp,λ(Rn) is the classical Morrey spaces. There are many

papers discussed the conditions on ϕ(x, r) to obtain the boundedness of operators on the generalized
Morrey spaces. For example, in [12], the following condition was imposed on the pair (ϕ1, ϕ2):∫ ∞

r

ϕ1(x, t)

t
dt ≤ C ϕ2(x, r), (1.1)

where C does not depend on x and t. Under the above condition, Guliyev obtained the boundedness
of the singular integral operator T from Mp,ϕ1(Rn) to Mp,ϕ1(Rn). Recently, in [1, 13], Guliyev et.
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introduced a weaker condition: If 1 < p < ∞, for any x ∈ Rn and t > 0, there exits a constant
c > 0, such that ∫ ∞

r

ess sup
t<s<∞

ϕ1(x, s)s
n
p

t
n
p+1

dt ≤ C ϕ2(x, r). (1.2)

If the pair (ϕ1, ϕ2) satisfies condition (1.1), then (ϕ1, ϕ2) satisfied condition (1.1). But the opposite
is not true. We can see remark 4.7 in [13] for details.

Suppose that k is the standard Calderón-Zygmund kernel. That is, k ∈ C∞(Rn \ {0}) is
homogeneous of degree −n, and

∫
Σ
k(x)dσx = 0, where Σ = {x ∈ Rn : |x| = 1}. The oscillatory

integral operator Tλ is defined by

Tλf(x) = p.v.

∫
Rn
eiλΦ(x,y)k(x− y)ϕ(x, y)f(y)dy, (1.3)

where λ ∈ R, ϕ ∈ C∞0 (Rn × Rn), the space of infinitely differentiable functions on Rn × Rn with
compact supports, and Φ is a real-analytic function or a real-C∞(Rn × Rn) function satisfying
that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such that ∂2Φ(x0, y0)/∂xj0∂yk0
does not vanish up to infinite order. These operators have arisen in the study of singular integrals
supported on lower dimensional varieties, and the singular Radon transform. In [21], Y. B. Pan
proved that Tλ are uniformly in λ bounded on Lp(Rn), 1 < p <∞.

Let k(x, y) be a variable Calderón-Zygmund kernel. That means, for a. e. x ∈ Rn, k(x, .) is a
standard Calderón-Zygmund kernel and

max
|j|≤2n,j∈Nn0

∥∥∥∂|j|k
∂yj

∥∥∥
L∞(Rn×Σ)

= A <∞. (1.4)

Define the oscillatory integral operator with variable Calderón-Zygmund kernel T ∗λ by

T ∗λf(x) = p.v

∫
Rn
eiλΦ(x,y)k(x, x− y)ϕ(x, y)f(y)dy, (1.5)

where λ, ϕ and Φ satisfy the same assumptions as those in the operator defined by (1.3).
S. Z. Lu and D. C. Yang etc. [16] investigated the Lp boundedness about this class of oscillatory

integral operators. The boundedness of some operators on these spaces can be see ([1, 10, 12, 13,
17, 18, 19, 28, 29], ). Recently, A. Eroglu [15] obtained the boundedness of a class of oscillatory
integral with Calderón-Zygmund kernel and polynomial phase on generalized Morrey spaces.

The purpose of this paper is to generalize the results above to the case with real-C∞(Rn ×Rn)
or analytic phase functions. Our main results in this paper are formulated as follows.

Theorem 1.1. Let λ ∈ R, ϕ ∈ C∞0 (Rn×Rn) and Φ is a real-C∞(Rn×Rn) function satisfying that
for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such that ∂2Φ(x0, y0)/∂xj0∂xk0 does
not vanish up to infinite order. Assume k is a standard Calderón-Zygmund kernel and Tλ is defined
as in (1.3). Then for any 1 < p <∞, and ϕ1, ϕ2 ∈ Ωp satisfies the condition (1.2), the operator Tλ
is bounded from Mp,ϕ1 to Mp,ϕ2 .

Theorem 1.2. Let λ ∈ R, ϕ ∈ C∞0 (Rn×Rn) and Φ is a real-C∞(Rn×Rn) function satisfying that
for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such that ∂2Φ(x0, y0)/∂xj0∂xk0 does
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not vanish up to infinite order. Assume k is a variable Calderón-Zygmund kernel and T ∗λ is defined
as in (1.5). Then for any 1 < p <∞, and ϕ1, ϕ2 ∈ Ωp satisfies the condition (1.2), the operator T ∗λ
is bounded from Mp,ϕ1 to Mp,ϕ2 .

Theorem 1.3. Let λ ∈ R, ϕ ∈ C∞0 (Rn × Rn) and Φ is a real-C∞(Rn × Rn) function satisfying
that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such that ∂2Φ(x0, y0)/∂xj0∂xk0
does not vanish up to infinite order. Assume k is a standard Calderón-Zygmund kernel and Tλ is
defined as in (1.3). Then for any 1 < p <∞, and ϕ1, ϕ2 ∈ Ωp,1 satisfies the conditions

cδ :=

∫ ∞
δ

sup
x∈Rn

ϕ1(x, t)
dt

t
<∞ (1.6)

for every δ > 0, and ∫ ∞
r

ϕ1(x, t)
dt

t
≤ C0ϕ2(x, r), (1.7)

where C0 does not depend on x ∈ Rn and r > 0, the operator Tλ is bounded from VMp,ϕ1 to
VMp,ϕ2 .

Theorem 1.4. Let λ ∈ R, ϕ ∈ C∞0 (Rn × Rn) and Φ is a real-C∞(Rn × Rn) function satisfying
that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such that ∂2Φ(x0, y0)/∂xj0∂xk0
does not vanish up to infinite order. Assume k is a standard Calderón-Zygmund kernel and T ∗λ is
defined as in (1.5). Then for any 1 < p < ∞, and ϕ1, ϕ2 ∈ Ωp,1 satisfies the conditions (1.6) and
(1.7), the operator T ∗λ is bounded from VMp,ϕ1 to VMp,ϕ2 .

2 Notations and preliminary Lemmas

Let B = B(x0, r) be the ball with the center x0 and radius r. Given a ball B and λ > 0, λB
denotes the ball with the same center as B whose radius is λ times that of B.

Lemma 2.1. [9] Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and 1 ≤ p <∞.
(i) If

sup
t<r<∞

r−n/p ϕ(x, r)−1 =∞ for some t > 0 and for all x ∈ Rn, (2.8)

then Mp,ϕ(Rn) = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (2.9)

then Mp,ϕ(Rn) = Θ.

Remark 2.2. We denote by Ωp the sets of all positive measurable functions ϕ on Rn× (0,∞) such
that for all t > 0,

sup
x∈Rn

∥∥∥r−n/p ϕ(x, r)−1
∥∥∥
L∞(t,∞)

<∞, and sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that ϕ ∈ Ωp.
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For brevity, in the sequel we use the notations

Ap,ϕ(f ;x, r) := r−n/p ϕ(x, r)−1‖f‖Lp(B(x,r))

and
AW,p,ϕ(f ;x, r) := r−n/p ϕ(x, r)−1‖f‖WLp(B(x,r)),

where WLp(B(x, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(B(x,r)) ≡ ‖fχB(x,r)
‖WLp(Rn) = sup

t>0
t

(∫
{y∈B(x,r): |f(y)|>t}

dy

) 1
p

.

Definition 2.3. The vanishing generalized Morrey space VMp,ϕ(Rn) is defined as the spaces of
functions f ∈Mp,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

Ap,ϕ(f ;x, r) = 0. (2.10)

The vanishing weak generalized Morrey space VWMp,ϕ(Rn) is defined as the spaces of functions
f ∈WMp,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

AW,p,ϕ(f ;x, r) = 0.

The vanishing spaces VMp,ϕ(Rn) and VWMp,ϕ(Rn) are Banach spaces with respect to the
norm

‖f‖VMp,ϕ ≡ ‖f‖Mp,ϕ = sup
x∈Rn,r>0

Ap,ϕ(f ;x, r),

‖f‖VWMp,ϕ ≡ ‖f‖WMp,ϕ = sup
x∈Rn,r>0

AW,p,ϕ(f ;x, r),

respectively.

Remark 2.4. We denote by Ωp,1 the sets of all positive measurable functions ϕ on Rn × (0,∞)
such that

inf
x∈Rn

inf
r>δ

ϕ(x, r) > 0, for some δ > 0, (2.11)

and

lim
r→0

rn/p

ϕ(x, r)
= 0. (2.12)

For the non-triviality of the space VMp,ϕ(Rn) we always assume that ϕ ∈ Ωp,1.
The vanishing generalized Morrey space VMp,ϕ(Rn) were studied in [2]. In the case ϕ(x, r) =

r(λ−n)/p, VMp,ϕ(Rn) is the vanishing Morrey space V Lp,λ(Rn) introduced by Vitanza in [31], where
applications to PDE were considered. We refer to [5, 14, 22, 25] for some properties of vanishing
generalized Morrey spaces.

Our argument based heavily on the following results.
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Lemma 2.5. [16] Assume Tλ is defined as in (1.3). Then for any 1 < p <∞, we have

‖Tλf‖Lp ≤ C(n, p,Φ, ϕ, Cp)B ‖f‖Lp ,

where C(n, p,Φ, ϕ, Cp) is independent of λ, k and f , and B = ‖k‖C1(
∑

).

Lemma 2.6. [16] Assume T ∗λ is defined as in (1.5). Then for any 1 < p <∞, we have

‖T ∗λf‖Lp ≤ C(n, p,Φ, ϕ, Cp)A ‖f‖Lp ,

where C(n, p,Φ, ϕ, Cp) is independent of λ, k and f . A is defined in (1.4).

The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
B3x

1

|B|

∫
B

|f(y)|dy, f ∈ Lloc(Rn).

Theorem 2.7. [1, 13] Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfy the condition (1.2). Then the maximal
operator M and the singular integral operator T are bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and
from M1,ϕ1 to WM1,ϕ2 .

A distribution kernel k is called a standard Calderòn-Zygmund kernel (SCZK) if it satisfies the
following hypotheses:

|k(x, y)| ≤ C

|x− y|n
,∀x 6= y,

|∇xk(x, y)|+ |∇yk(x, y)| ≤ C

|x− y|n+1
,∀x 6= y.

The corresponding Calderòn-Zygmund integral operator S and oscillatory integral operator R are
defined by

Sf(x) = p.v.

∫
Rn
k(x, y)f(y)dy

and

Rf(x) = p.v.

∫
Rn
eiP (x,y)k(x, y)f(y)dy,

where P (x, y) is a real valued polynomial defined on Rn × Rn.
Theorem A [15] Let 1 < p < ∞, and (ϕ1, ϕ2) satisfies the condition (1.1). If S is of type

(L2, L2), then for any real polynomial P (x, y), there exists a constant C > 0 such that

‖Rf‖Mp,ϕ2 ≤ C‖f‖Mp,ϕ1 .

Lemma 2.8. [30] Denote by Hm the spaces of spherical harmonic functions of degree m. Then
(a) L2(

∑
) = ⊕∞m=0Hm, and gm = dimHm ≤ C(n)mn−2 for any m ∈ N,

(b) for any m = 0, 1, 2, ..., there exists an orthogonal system {Yjm}gmj=1 of Hm such that

‖Yjm‖L∞(
∑

) ≤ C(n)mn/2−1, Yjm = (−m)−n(m + n − 2)−nΛnYjm, j = 1, ..., gm, and Λ is the
Beltrami-Laplace operator on

∑
.

In the following the letter C will denote a constant which may vary at each occurrence.
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3 Proof of Theorems 1.1 and 1.2

In this section we are going to use the following statement on the boundedness of the Hardy operator

Hg(t) :=
1

t

∫ t

0

g(r)dr, 0 < t <∞.

Theorem B. [4] The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A := sup
t>0

w(t)

t

∫ t

0

dr

ess inf
0<s<r

v(s)
<∞,

and c ≈ A.
The following lemma is valid.

Lemma 3.1. Let 1 < p <∞ and Tλ is defined as in (1.3). Then the inequality

‖Tλf‖Lp(B(x0,r)) . r
n
p

∫ ∞
2r

‖f‖Lp(B(x0,t))t
−1−np dt (3.13)

holds for any ball B(x0, r) and for all f ∈ Lploc(Rn).

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0 and
radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ(2B){(y)

and have
‖Tλf‖Lp(B) ≤ ‖Tλf1‖Lp(B) + ‖Tλf2‖Lp(B).

It is known that (see Lemma 2.5) the operator Tλ is bounded on Lp(Rn). Since f1 ∈ Lp(Rn),
Tλf1 ∈ Lp(Rn) and boundedness of Tλ in Lp(Rn) (see [16]) it follows that

‖Tλf1‖Lp(B) ≤ ‖Tλf1‖Lp(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where the constant C > 0 is independent of f .
We now estimate Tλf2. We can write∣∣∣Tλf2(x)

∣∣∣ =
∣∣∣ ∫

(2B){
eiλΦ(x,y)k(x− y)ϕ(x, y)f(y)dy

∣∣∣.
Now by an argument similar to the proof of Lemma 6 in [16], we choose ϕ1 ∈ C∞0 (Rn) such

that ϕ1(x) ≡ 1 when |x| ≤ 1, and ϕ1(x) ≡ 0 when |x| > 2. Let ϕ2 = 1 − ϕ1 and N ∈ N which is
large enough and will be determined later. Write

k(x) = k1
λ(x) + k2

λ(x),
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where

kjλ = k(x)ϕj(λ
1/Nx), j = 1, 2.

Then

Tλf2(x) = p.v.

∫
(2B)c

eiλΦ(x,y)k1
λ(x− y)ϕ(x, y)f(y)dy

+ p.v.

∫
(2B)c

eiλΦ(x,y)k2
λ(x− y)ϕ(x, y)f(y)dy := T 1

λf2(x) + T 2
λf2(x).

Let us first estimate T 1
λf2(x). To do so, using Taylor’s expansion and the compactness of suppϕ,

we write

Φ(x, y) = Φ(x, x) + P (x, y) + rN (x, y)

for (x.y) ∈ suppϕ, where P (x, y) is a polynomial with deg P < N and |rN (x, y)| ≤ C|x− y|N with
C in dependent of x and y. Define

Rf(x) = p.v.

∫
(2B)c

eiλP (x,y)k1
λ(x− y)ϕ(x, y)f(y)dy.

Therefore

e−iλΦ(x,x)T 1
λf2(x)−Rf(x)

=

∫
|x−y|≤2λ−1/N

eiλP (x,y)
(
eiλrN (x,y) − 1]

)
k1
λ(x− y)ϕ(x, y)f(y)dy

=

∞∑
j=0

∫
2−jλ−1/N<|x−y|≤2−j+1λ−1/N

eiλP (x,y)
(
eiλrN (x,y) − 1

)
k1
λ(x− y)ϕ(x, y)f(y)dy

≡
∞∑
j=0

T 1
λjf2(x).

On T 1
λjf2(x), by the properties of rN and k, we have

|T 1
λjf2(x)| ≤ C2−jNMf(x).

So we have

|T 1
λf2(x)| ≤ C

∞∑
j=0

2−jNMf(x) + C|Rf(x)| ≤ CMf(x) + C|Rf(x)|.

By Theorem 4.1 in [12] and Lemma 3.1 in [15], we have

‖T 1
λf2‖Lp(B(x0,r)) . ‖Mf‖Lp(B(x0,r)) + ‖Rf‖Lp(B(x0,r))

. r
n
p

∫ ∞
2r

‖f‖Lp(B(x0,t))t
−1−np dt.
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Now, let us turn to estimate T 2
λf2(x). We consider the following two cases.

Case 1. λ ≤ 1. Similar to that estimate of T 2
λ in Lemma 6 in [16], we have

|T 2
λf2(x)| ≤ CMf(x),

where the constant C > 0 is independent of f . By Theorem 4.1 in [12] we have

‖T 2
λf2‖Lp(B(x0,r)) ≤ C‖f‖Lp(B(x0,r)).

Case 2. λ > 1. We choose ϕ0 ∈ C∞0 (Rn) such that

suppϕ0 ⊆ {x ∈ Rn : 1 < |x| ≤ 2},

and

ϕ2(x) =

∞∑
j=0

ϕ0(2−jx).

Let
k2
λ,j(x) = k(x)ϕ0(2−jλ1/Nx).

Then

T 2
λf2(x) =

∫
(2B){

eiλΦ(x,y)k2
λ(x− y)ϕ(x, y)f(y)dy

=

∞∑
j=0

∫
(2B){

eiλΦ(x,y)k2
λ,j(x− y)ϕ(x, y)f(y)dy

≡
∞∑
j=0

T 2
λ,jf2(x).

For T 2
λ,j , by the definition of it, we can get

|T 2
λf2(x)| ≤ C

∫
2jλ−1/N<|x−y|≤2j.1λ−1/N

1

|x− y|n
|f(y)|dy ≤ CMf(x). (3.14)

The inequality (3.14) also can be see in [16], we omit the detail here.
By Theorem 4.1 in [12], we have

‖T 2
λf2‖Lp(B(x0,r)) ≤ Cr

n
p

∫ ∞
2r

‖f‖Lp(B(x0,t))t
−1−np dt.

Therefore

‖Tλf2‖Lp(B(x0,r)) ≤ ‖T
1
λf2‖Lp(B(x0,r)) + ‖T 2

λf2‖Lp(B(x0,r))

≤ Cr
n
p

∫ ∞
2r

‖f‖Lp(B(x0,t))t
−1−np dt.

This finishes the proof of Lemma 3.1. q.e.d.
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Proof of Theorem 1.1
By Lemma 3.1 and Theorem B we get

‖Tλf‖Mp,ϕ2 . sup
x∈Rn,r>0

ϕ2(x, r)−1

∫ ∞
r

‖f‖Lp(B(x,t))t
−1−np dt

≈ sup
x∈Rn, r>0

ϕ2(x, r)−1

∫ r
−n
p

0

‖f‖
Lp(B(x,t−

p
n ))
dt

= sup
x∈Rn, r>0

ϕ2(x, r−
p
n )−1

∫ r

0

‖f‖
Lp(B(x,t−

p
n ))
dt

. sup
x∈Rn,r>0

ϕ1(x, r−
p
n )−1 r ‖f‖

Lp(B(x,r−
p
n ))

= ‖f‖Mp,ϕ1

This finishes the proof of Theorem 1.1.

The following lemma is valid.

Lemma 3.2. Let 1 < p <∞ and T ∗λ is defined as in (1.5). Then the inequality

‖T ∗λf‖Lp(B(x0,r)) . r
n
p

∫ ∞
2r

‖f‖Lp(B(x0,t))t
−1−np dt

holds for any ball B(x0, r) and for all f ∈ Lploc(Rn).

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0 and
radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ(2B){(y)

and have
‖T ∗λf‖Lp(B) ≤ ‖T ∗λf1‖Lp(B) + ‖T ∗λf2‖Lp(B).

It is known that (see Lemma 2.5) the operator T ∗λ is bounded on Lp(Rn). Since f1 ∈ Lp(Rn),
T ∗λf1 ∈ Lp(Rn) and boundedness of T ∗λ in Lp(Rn) (see [16]) it follows that

‖T ∗λf1‖Lp(B) ≤ ‖T ∗λf1‖Lp(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where the constant C > 0 is independent of f .
We now estimate T ∗λf2. For each m ∈ N and j = 1, . . . , gm, we get

ajm(x) =

∫
∑ Ω(x, z)Yjm(z)dσz,

where Ω(x, z) = |z|nk(x, z). Then for a.e.x ∈ Rn,

Ω(x, z) =

∞∑
m=1

gm∑
j=1

ajm(x)Yjm(z′), (3.15)
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where z′ = z/|z| for any z ∈ Rn\{0}. By Lemma 2.8, we have that for any x ∈ Rn,

|ajm(x)| = m−n(m+ n− 2)−n

∣∣∣∣∣
∫
∑ Ω(x, z)ΛnYjm(z)dσz

∣∣∣∣∣
= m−n(m+ n− 2)−n

∣∣∣∣∣
∫
∑ ΛnΩ(x, z)Yjm(z)dσz

∣∣∣∣∣
≤ C(n)Am−2n. (3.16)

By Lemma 2.8 again, we can verify that for any ε > 0, N ∈ N, and a.e. x ∈ Rn, if |y − x| ≥ ε,
then ∣∣∣∣∣∣

N∑
m=1

gm∑
j=1

eiλΦ(x,y) ajm(x)Yjm((x− y)′)

|x− y|n
ϕ(x, y)f2(y)

∣∣∣∣∣∣ ≤ C(ε)A |f2(y)|. (3.17)

Therefore, from (3.15), (3.17) and the Lebesgue dominated convergence theorem, it follows that

T ∗λf2(x) = lim
ε→0

∫
|x−y|≥ε

eiλΦ(x,y)k(x, x− y)ϕ(x, y)f2(y)dy

= lim
ε→0

∞∑
m=1

gm∑
j=1

∫
|x−y|≥ε

eiλΦ(x,y) ajm(x)Yjm((x− y)′)

|x− y|n
ϕ(x, y)f2(y)dy

= lim
ε→0

∞∑
m=1

gm∑
j=1

ajm(x)

∫
|x−y|≥ε

eiλΦ(x,y)Yjm((x− y)′)

|x− y|n
ϕ(x, y)f2(y)dy.

We write

Rjmf2(x) =

∫
|x−y|≥ε

eiλΦ(x,y)Yjm((x− y)′)

|x− y|n
ϕ(x, y)f2(y)dy.

It is easy to see that Rjmf2(x) is the oscillatory integral operator defined by (1.3). By Theorem
1.1 we have Rjm bounded from Mp,ϕ1(Rn) to Mp,ϕ2(Rn). Therefore, by (3.16) and the above
discussion we have

‖T ∗λf2‖Lp(B(x0,r)) . r
n
p

∫ ∞
2r

‖f‖Lp(B(x0,t))t
−1−np dt.

This finishes the Lemma 3.2. q.e.d.

Proof of Theorem 1.2.
By Lemma 3.2 and Theorem B we get
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‖T ∗λf‖Mp,ϕ2 . sup
x∈Rn,r>0

ϕ2(x, r)−1

∫ ∞
r

‖f‖Lp(B(x,t))t
−1−np dt

≈ sup
x∈Rn, r>0

ϕ2(x, r)−1

∫ r
−n
p

0

‖f‖
Lp(B(x,t−

p
n ))
dt

= sup
x∈Rn, r>0

ϕ2(x, r−
p
n )−1

∫ r

0

‖f‖
Lp(B(x,t−

p
n ))
dt

. sup
x∈Rn,r>0

ϕ1(x, r−
p
n )−1 r ‖f‖

Lp(B(x,r−
p
n ))

= ‖f‖Mp,ϕ1

This finishes the proof of Theorem 1.2.

4 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3.
The statement is derived from the estimate (3.13). The estimation of the norm of the operator,

that is, the boundedness in the non-vanishing space, immediately follows from by Theorem 1.1. So
we only have to prove that

lim
r→0

sup
x∈Rn

Ap,ϕ1
(f ;x, r) = 0 ⇒ lim

r→0
sup
x∈Rn

Ap,ϕ2
(Tλf ;x, r) = 0. (4.18)

To show that sup
x∈Rn

ϕ2(x, r)−1r−n/p‖Tλf‖Lp(B(x,r)) < ε for small r, we split the right-hand side

of (3.13):

ϕ2(x, r)−1r−n/p‖Tλf‖Lp(B(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (4.19)

where δ0 > 0 (we may take δ0 > 1), and

Iδ0(x, r) :=
1

ϕ2(x, r)

∫ δ0

r

t−
n
p−1‖f‖Lp(B(x,t))dt

and

Jδ0(x, r) :=
1

ϕ2(x, r)

∫ ∞
δ0

t−
n
p−1‖f‖Lp(B(x,t))dt

and it is supposed that r < δ0. We use the fact that f ∈ VMp,ϕ1(Rn) and choose any fixed δ0 > 0
such that

sup
x∈Rn

ϕ1(x, r)−1r−n/p‖f‖Lp(B(x,r)) <
ε

2CC0
,

where C and C0 are constants from (1.7) and (4.19). This allows to estimate the first term uniformly
in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0.
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The estimation of the second term now my be made already by the choice of r sufficiently small.
Indeed, thanks to the condition (2.11) we have

Jδ0(x, r) ≤ cσ0

1

ϕ1(x, r)
‖f‖VMp,ϕ1 ,

where cσ0
is the constant from (2.10). Then, by (2.11) it suffices to choose r small enough such

that

sup
x∈Rn

1

ϕ2(x, r)
≤ ε

2cσ0
‖f‖VMp,ϕ1

,

which completes the proof of (4.18).

The proof of Theorem 1.4 is similar to the proof of Theorem 1.3.
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